($C, 1$) Means of Orthonormal Expansions for Exponential Weights

D. S. Lubinsky

Centre for Applicable Analysis and Number Theory, Mathematics Department, Witwatersrand University, Wits 2050, South Africa
E-mail: 036dsl@cosmos.wits.ac.za

and

D. Mache

Mathematics Department, Ludwig-Maximilians Universität, Theresienstrasse 39, D-80333 München, Germany E-mail: mache@rz.mathematik.uni-muenchen.de

Communicated by Vilmos Totik
Received November 2, 1998; accepted in revised form September 16, 1999

Let $s_{m}[f]$ denote the m th partial sum of the orthonormal expansion of $f: \mathbb{R} \rightarrow \mathbb{R}$ with respect to the orthonormal polynomials for the weight $W^{2}(x)=\exp \left(-|x|^{\alpha}\right)$, $\alpha>1$. We show that for some C independent of f and n,

$$
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \phi_{n}^{-2 / 3}\right\|_{L_{\infty}(\mathbb{R})} \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})}
$$

where

$$
\phi_{n}(x):=\left(\left|1-\left|\frac{x}{a_{n}}\right|\right|+n^{-2 / 3}\right)
$$

and a_{n} denotes the nth Mhaskar-Rahmanov-Saff number for $Q(x)=\frac{1}{2}|x|^{\alpha}$. The novelty is the presence of the factor $\phi_{n}^{-2 / 3}$, which is large close to $\pm a_{n}$: that factor was absent in the classic results of G. Freud. Related results are proved for more general exponential weights on $(-1,1)$ or \mathbb{R}. © 2000 Academic Press

1. INTRODUCTION AND RESULTS

Let I denote either $(-1,1)$ or \mathbb{R}. Let $W: I \rightarrow(0, \infty)$ be such that all the power moments

$$
\int_{I} x^{n} W^{2}(x) d x, \quad n \geqslant 0
$$

are finite. Then we may define orthonormal polynomials

$$
p_{n}(x)=\gamma_{n} x^{n}+\cdots, \quad \gamma_{n}>0, \quad n \geqslant 0,
$$

satisfying

$$
\int_{I} p_{n} p_{m} W^{2}=\delta_{m n}
$$

For $f: I \rightarrow \mathbb{R}$ such that $f(x) x^{j} W^{2}(x) \in L_{1}(I), j \geqslant 0$, we may form the formal orthonormal expansion

$$
f \leftrightarrow \sum_{j=0}^{\infty} b_{j} p_{j},
$$

where

$$
\begin{equation*}
b_{j}:=b_{j}(f):=\int_{I} f p_{j} W^{2}, \quad j \geqslant 0 . \tag{1}
\end{equation*}
$$

The m th partial sum of this expansion is denoted by

$$
\begin{equation*}
s_{m}[f]:=\sum_{j=0}^{m-1} b_{j}(f) p_{j}, \quad m \geqslant 1 . \tag{2}
\end{equation*}
$$

A classic result of G. Freud, proved using the still more classic de la Vallee Poussin argument, asserts that for a class of weights including the exponential weights

$$
\begin{equation*}
(W(x)=) W_{\alpha}(x):=\exp \left(-\frac{1}{2}|x|^{\alpha}\right), \quad \alpha>1, \tag{3}
\end{equation*}
$$

there is strong $(C, 1)$ summability of the orthonormal expansions:

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f]\right|\right) W_{\alpha}\right\|_{L_{\infty}(\mathbb{R})} \leqslant C\left\|f W_{\alpha}\right\|_{L_{\infty}(\mathbb{R})} \tag{4}
\end{equation*}
$$

with C independent of f and n. This inequality was the basis of Freud's methods for proving weighted Jackson theorems, see [6, 7, 23]. Strictly speaking Freud considered only $\alpha \geqslant 2$, but later work established that his proofs could be extended to all $\alpha>1$. For $\alpha<1$, the polynomials are not dense in a suitable weighted space, while the boundary case $\alpha=1$ is not fully understood as regards Jackson theorems. See [19, 23] for further orientation.

In this paper, we show that it is possible to strengthen (4) in the sense that one can insert a factor that is large near the largest zero of p_{n} in the
left-hand side of (4). To further elucidate this, we require the notion of the Mhaskar-Rahmanov-Saff number. We shall assume throughout that our weight has the form

$$
\begin{equation*}
W=e^{-Q}, \tag{5}
\end{equation*}
$$

where $Q: I \rightarrow \mathbb{R}$ is even and convex. The nth Mhaskar-Rahmanov-Saff number a_{n} is the positive root of the equation

$$
\begin{equation*}
n=\frac{2}{\pi} \int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right) \frac{d t}{\sqrt{1-t^{2}}}, \quad n \geqslant 1 . \tag{6}
\end{equation*}
$$

One of its properties is that

$$
\begin{equation*}
\|P W\|_{L_{\infty}(I)}=\|P W\|_{L_{\infty}\left(-a_{n}, a_{n}\right)}, \quad P \in \mathscr{P}_{n}, \tag{7}
\end{equation*}
$$

where \mathscr{P}_{n} denotes the polynomials of degree $\leqslant n$. For example, for $W=W_{\alpha}$, it is easily seen that

$$
a_{n}=C n^{1 / \alpha}, \quad n \geqslant 1,
$$

where C may be expressed in terms of gamma functions (see [19, 20, 26]).
We shall show that one may insert a factor $\left(\left|1-\left(|x| / a_{n}\right)\right|+n^{-2 / 3}\right)^{-1 / 3}$ in the left-hand side of (4), for a class of weights including $W_{\alpha}, \alpha>1$; moreover, when we drop the absolute value in (4), that is when we consider ordinary $(C, 1)$ summability, then we may replace $-1 / 3$ by $-2 / 3$. The most general class of Freud weights that we have in mind is given in:

Definition 1. Freud Weights \mathscr{F}.
Let $W=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous and $Q^{\prime \prime}$ is continuous in $(0, \infty)$. Assume moreover, that $Q^{\prime}>0$ in $(0, \infty)$, and that for some A, $B>1$,

$$
\begin{equation*}
A \leqslant 1+\frac{x Q^{\prime \prime}(x)}{Q^{\prime}(x)} \leqslant B, \quad x \in(0, \infty) . \tag{8}
\end{equation*}
$$

Then we write $W \in \mathscr{F}$.
Note that for $W=W_{\alpha}$, (8) holds with $A=B=\alpha$. In addition to Freud weights on the real line, we consider a class of Erdős weights, for which the exponent Q grows faster than any polynomial:

Definition 2. Erdős Weights \mathscr{E}.
Let $W=e^{-Q}$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous and $Q^{\prime \prime}$ is continuous in $(0, \infty)$. Assume that $Q^{\prime}>0, Q^{\prime \prime} \geqslant 0$ in $(0, \infty)$, and that the function

$$
\begin{equation*}
T(x):=1+\frac{x Q^{\prime \prime}(x)}{Q^{\prime}(x)}, \quad x \in(0, \infty) \tag{9}
\end{equation*}
$$

is increasing in $(0, \infty)$ with

$$
\begin{equation*}
\lim _{x \rightarrow 0+} T(x)>1 ; \quad \lim _{x \rightarrow \infty} T(x)=\infty . \tag{10}
\end{equation*}
$$

Assume moreover that for some $C_{j}>0, j=1,2,3$,

$$
C_{1} \leqslant T(x) \frac{Q(x)}{x Q^{\prime}(x)} \leqslant C_{2}, \quad x \geqslant C_{3} .
$$

Then we write $W \in \mathscr{E}$.
The archetypal example of $W \in \mathscr{E}$ is

$$
\begin{equation*}
W(x)=W_{k, \alpha}(x)=\exp \left(-\exp _{k}\left(|x|^{\alpha}\right)\right) \tag{11}
\end{equation*}
$$

where $\alpha>1$ and $k \geqslant 1$ and

$$
\exp _{k}:=\underbrace{\exp (\exp (\cdots \exp () \cdots))}_{k \text { times }}
$$

denotes the k th iterated exponential. We also set

$$
\exp _{0}(x):=x
$$

See $[12,13]$ for further orientation on Erdős weights.
The third class of weights we consider is a class of exponential weights on $(-1,1)$:

Defintition 3. Exponential Weights on $(-1,1) \mathscr{E} \mathscr{X} \mathscr{P}$.
Let $W=e^{-Q}$, where $Q:(-1,1) \rightarrow \mathbb{R}$ is even and $Q^{\prime \prime}$ is continuous in $(-1,1)$. Assume that $Q^{\prime}>0, Q^{\prime \prime} \geqslant 0$ in $(0,1)$, and that the function

$$
\begin{equation*}
T(x):=1+\frac{x Q^{\prime \prime}(x)}{Q^{\prime}(x)}, \quad x \in(0,1) \tag{12}
\end{equation*}
$$

is increasing in $(0,1)$ with

$$
\begin{equation*}
\lim _{x \rightarrow 0+} T(x)>1 . \tag{13}
\end{equation*}
$$

Assume moreover that for some $C_{1}>0, C_{2}>0$,

$$
\begin{equation*}
C_{1} \leqslant T(x) \frac{Q(x)}{Q^{\prime}(x)} \leqslant C_{2}, \quad x \text { close enough to } 1 \tag{14}
\end{equation*}
$$

and that for some $A>2$ and x close enough to 1 ,

$$
\begin{equation*}
T(x) \geqslant \frac{A}{1-x^{2}} . \tag{15}
\end{equation*}
$$

Then we write $W \in \mathscr{E} \mathscr{X} \mathscr{P}$.
The archetypal example of $W \in \mathscr{E} \mathscr{X P}$ is

$$
\begin{equation*}
W(x)=W^{k, \alpha}(x):=\exp \left(-\exp _{k}\left(\left(1-x^{2}\right)^{-\alpha}\right)\right), \quad x \in(-1,1) \tag{16}
\end{equation*}
$$

where $k \geqslant 0, \alpha>0$. For further orientation on $\mathscr{E} \mathscr{X} \mathscr{P}$, see [10].
It is possible to treat the classes $\mathscr{F}, \mathscr{E}, \mathscr{E} \mathscr{X P}$ in a more general and unified framework [11], but we prefer here to quote already published results. In any event, it is possible to describe simultaneously several features of the $(C, 1)$ means of the orthonormal expansions for all three classes of weights: this requires some additional notation. We set

$$
\begin{equation*}
\delta_{n}:=\left(n T\left(a_{n}\right)\right)^{-2 / 3}, \quad n \geqslant 1, \tag{17}
\end{equation*}
$$

and define the functions

$$
\begin{equation*}
\phi_{n}(x):=\left|1-\frac{|x|}{a_{n}}\right|+\delta_{n} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{n}(x):=\frac{\phi_{n}(x)+T\left(a_{n}\right)^{-1}}{\sqrt{\phi_{n}(x)}}=\frac{\left|1-\frac{|x|}{a_{n}}\right|+\delta_{n}+T\left(a_{n}\right)^{-1}}{\sqrt{\left|1-\frac{|x|}{a_{n}}\right|+\delta_{n}}} \tag{19}
\end{equation*}
$$

The function ψ_{n} plays a role in describing the spacing between successive zeros of p_{n}, the growth of Christoffel functions, and related quantities, in much the same way as does the function $1-x^{2}+n^{-2}$ for Jacobi weights and their generalizations on $(-1,1)$. Note that for Freud weights, T is bounded above and below by positive constants, so δ_{n} behaves like $n^{-2 / 3}$.

By a minor modification of the classical de la Vallee Poussin argument for L_{∞} and then via standard duality and interpolation techniques, we prove:

Theorem 4. Let $W \in \mathscr{F}, \mathscr{E}$ or $\mathscr{E} \mathscr{X} \mathscr{P}$. Let $1 \leqslant p<\infty$ and let

$$
\begin{equation*}
\Psi_{n}(x):=\max \left\{\psi_{n}^{1 / 2}(x), \psi_{n}^{2 / 3}(x)\right\}, \quad x \in I . \tag{20}
\end{equation*}
$$

Then for some C independent of f and n,

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \Psi_{n}^{1-1 / p}\right\|_{L_{p}(I)} \leqslant C\left\|f W \Psi_{n}^{-1 / p}\right\|_{L_{p}(I)} . \tag{21}
\end{equation*}
$$

For the case $p=\infty$, we have

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f]\right|\right) W \Psi_{n}\right\|_{L_{\infty}(I)} \leqslant C\|f W\|_{L_{\infty}(I)} \tag{22}
\end{equation*}
$$

We note that if one uses the classical de la Vallee Poussin argument, one has to omit the $\psi_{n}^{2 / 3}$ in (20); our modification permits the inclusion of this factor.

In [16], strong $(C, 1)$ means of orthonormal expansions for Erdős weights were investigated; there for $p=\infty$, instead of Ψ_{n} in (22) there was a factor $T^{-1 / 4}$ in the left-hand side. Since one can show that

$$
T^{-1 / 4} \leqslant C \psi_{n}^{1 / 2} \leqslant C \Psi_{n}
$$

for the class \mathscr{E}, the above result constitutes an improvement of the result in [16].

To acquire some perspective on how Theorem 4 relates to Freud's (4), we specialize to Freud weights. Here $\Psi_{n} / \phi_{n}^{-1 / 3}$ is bounded above and below by positive constants and we obtain:

Corollary 5. Let $W \in \mathscr{F}$. Let $1 \leqslant p<\infty$. Then for some C independent of f and n,

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \phi_{n}^{-(1-1 / p) / 3}\right\|_{L_{p}(I)} \leqslant C\left\|f W \phi_{n}^{1 /(3 p)}\right\|_{L_{p}(I)} \tag{23}
\end{equation*}
$$

For the case $p=\infty$, we have

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f]\right|\right) W \phi_{n}^{-1 / 3}\right\|_{L_{\infty}(I)} \leqslant C\|f W\|_{L_{\infty}(I)} \tag{24}
\end{equation*}
$$

Thus under the same hypotheses as Freud, one may insert the factor $\phi_{n}^{-1 / 3}$, which is large near $\pm a_{n}$. The obvious question is whether or not $1 / 3$ is sharp. If one assumes more about the orthonormal polynomials, it is not.

Recall that the orthonormal polynomials $\left\{p_{n}\right\}$ satisfy the three term recurrence relation

$$
\begin{equation*}
x p_{n-1}(x)=\alpha_{n} p_{n}(x)+\alpha_{n-1} p_{n-2}(x), \quad n \geqslant 1 \tag{25}
\end{equation*}
$$

where we set $p_{-1}:=0$ and

$$
\begin{equation*}
\alpha_{n}:=\gamma_{n-1} / \gamma_{n}, \quad n \geqslant 1 . \tag{26}
\end{equation*}
$$

It is known for large classes of Freud weights [14] that

$$
\begin{equation*}
\alpha_{n}=\frac{1}{2} a_{n}(1+o(1)), \quad n \rightarrow \infty . \tag{27}
\end{equation*}
$$

Assuming somewhat more allows us to improve on the $1 / 3$ in (23) and (24):

Theorem 6. Let $W \in \mathscr{F}$ and assume that for some $\beta>0$,

$$
\begin{equation*}
\alpha_{n}=\frac{1}{2} a_{n}\left(1+O\left(n^{-\beta}\right)\right) \quad n \rightarrow \infty . \tag{28}
\end{equation*}
$$

Let

$$
\begin{equation*}
\kappa:=\min \left\{\frac{2}{3}, \frac{1}{3}+\frac{\beta}{2}, \frac{5}{12}+\frac{\beta}{4}\right\} . \tag{29}
\end{equation*}
$$

Let $1 \leqslant p<\infty$. Then for some C independent of f and n,

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \phi_{n}^{-(1-1 / p) \kappa}\right\|_{L_{p}(I)} \leqslant C\left\|f W \phi_{n}^{\kappa / p}\right\|_{L_{p}(I)} . \tag{30}
\end{equation*}
$$

For the case $p=\infty$, we have

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \phi_{n}^{-\kappa}\right\|_{L_{\infty}(I)} \leqslant C\|f W\|_{L_{\infty}(I)} . \tag{31}
\end{equation*}
$$

For $W_{\alpha}, \alpha>1$, (28) is known with $\beta=\min \{\alpha, 2\}$. This was recently proved by Kriecherbauer and McLaughlin [8], thereby improving results of Rakhmanov [25]. For α a positive even integer, more complete asymptotics are known, [3], [18]. Likewise when Q is a polynomial, more complete asymptotics are known [1,3]. Thus we may deduce:

Corollary 7. For $W=W_{\alpha}, \alpha>1$, and $1 \leqslant p<\infty$,

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W_{\alpha} \phi_{n}^{-(2 / 3)(1-1 / p)}\right\|_{L_{p}(I)} \leqslant C\left\|f W_{\alpha} \phi_{n}^{2 / 3 p}\right\|_{L_{p}(I)} . \tag{32}
\end{equation*}
$$

For the case $p=\infty$, we have

$$
\begin{equation*}
\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W_{\alpha} \phi_{n}^{-2 / 3}\right\|_{L_{\infty}(I)} \leqslant C\left\|f W_{\alpha}\right\|_{L_{\infty}(I)} . \tag{33}
\end{equation*}
$$

It is an interesting problem to determine the sharp power of ϕ_{n} in (33).
This paper is organised as follows: in Section 2, we present the de la Vallee Poussin argument, and its minor modification, which leads to the proof of Theorem 4 and hence Corollary 5. In Section 3, we present an estimate on sums of squares of $p_{m+1}-p_{m-1}$, under the assumption (28). In Section 4, we prove Theorem 6 and deduce Corollary 7.

2. PROOF OF THEOREM 4

We begin by recalling the classic de la Vallee Poussin argument. (This has been clearly presented often [7], [23],... but we do need the details). Let $f: I \rightarrow \mathbb{R}, x \in I$ and $\rho_{n}>0$. We let

$$
f_{n}(t):= \begin{cases}f(t), & |t-x| \leqslant \rho_{n} \tag{34}\\ 0, & |t-x|>\rho_{n}\end{cases}
$$

and

$$
F_{n}(t):=\frac{f(t)-f_{n}(t)}{x-t}= \begin{cases}\frac{f(t)}{x-t}, & |t-x|>\rho_{n} \tag{35}\\ 0, & |t-x| \leqslant \rho_{n}\end{cases}
$$

Then we may split for $m \leqslant n$,

$$
\begin{equation*}
s_{m}[f](x)=s_{m}\left[f_{n}\right](x)+s_{n}\left[F_{n}(\cdot)(x-\cdot)\right](x) . \tag{36}
\end{equation*}
$$

Let

$$
\begin{equation*}
K_{m}(x, t):=\sum_{j=0}^{m-1} p_{j}(x) p_{j}(t) \tag{37}
\end{equation*}
$$

so that

$$
\begin{equation*}
s_{m}\left[f_{n}\right](x)=\int_{I} K_{m}(x, t) f_{n}(t) W^{2}(t) d t . \tag{38}
\end{equation*}
$$

The de la Vallee Poussin/Freud Estimate for $s_{m}\left[f_{n}\right](x)$.

$$
\begin{align*}
\left|s_{m}\left[f_{n}\right](x)\right| & \leqslant\|f W\|_{L_{\infty}(I)} \int_{I \cap\left[x-\rho_{n}, x+\rho_{n}\right]}\left|K_{m}(x, t)\right| W(t) d t \tag{39}\\
& \leqslant\|f W\|_{L_{\infty}(I)} \sqrt{2 \rho_{n}} \sqrt{\int_{I} K_{m}^{2}(x, t) W^{2}(t) d t} \\
& =\|f W\|_{L_{\infty}(I)} \sqrt{2 \rho_{n}} \sqrt{\sum_{j=0}^{m-1} p_{j}^{2}(x)}, \tag{40}
\end{align*}
$$

by the Cauchy-Schwarz inequality and then orthogonality. Recall now the Christoffel function:

$$
\begin{equation*}
\lambda_{m}^{-1}\left(W^{2}, x\right):=\sum_{j=0}^{m-1} p_{j}^{2}(x) . \tag{41}
\end{equation*}
$$

Since λ_{m}^{-1} clearly increases with m, we deduce that (note that the λ_{n+1} simplifies later calculations)

$$
\begin{equation*}
\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}\left[f_{n}\right](x)\right| W(x) \leqslant\|f W\|_{L_{\infty}(I)} \sqrt{2 \rho_{n}} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)} . \tag{42}
\end{equation*}
$$

The de la Vallee Poussin/Freud Estimate for $s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x)$. We need the Christoffel Darboux formula

$$
\begin{equation*}
K_{m}(x, t)=\alpha_{m} \frac{p_{m}(x) p_{m-1}(t)-p_{m-1}(x) p_{m}(t)}{x-t} . \tag{43}
\end{equation*}
$$

We see then that

$$
\begin{align*}
s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x) & =\int_{I} K_{m}(x, t) F_{n}(t)(x-t) W^{2}(t) d t \\
& =\alpha_{m}\left[p_{m}(x) b_{m-1}\left(F_{n}\right)-p_{m-1}(x) b_{m}\left(F_{n}\right)\right] . \tag{44}
\end{align*}
$$

Let us abbreviate $b_{m}\left(F_{n}\right)$ as b_{m}. We deduce that

$$
\begin{aligned}
& \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}\left[F_{n}(\cdot)(x-\cdot)(x)\right]\right| \\
& \quad \leqslant \frac{1}{n}\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) \sum_{m=1}^{n}\left(\left|p_{m}(x)\right|\left|b_{m-1}\right|+\left|p_{m-1}(x)\right|\left|b_{m}\right|\right) \\
& \quad \leqslant\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) \frac{2}{n} \sqrt{\sum_{m=0}^{n} p_{m}^{2}(x)} \sqrt{\sum_{m=0}^{n} b_{m}^{2}}
\end{aligned}
$$

by the Cauchy-Schwarz inequality. Using Bessel's inequality for orthonormal expansions, we continue this as

$$
\begin{align*}
& \leqslant\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) \frac{2}{n} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right)} \sqrt{\int_{I} F_{n}^{2} W^{2}} \\
& \leqslant\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) \frac{2}{n} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right)}\|f W\|_{L_{\infty}(I)} \sqrt{\int_{|t-x| \geqslant \rho_{n}} \frac{d t}{(t-x)^{2}}} \\
& =\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) \frac{2 \sqrt{2}}{n} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) \rho_{n}^{-1}}\|f W\|_{L_{\infty}(I)} . \tag{45}
\end{align*}
$$

The de la Vallee Poussin estimate for the strong $(C, 1)$ means of $s_{m}[f]$. Combining (36), (42) and (45) gives

$$
\begin{align*}
\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \leqslant & \|f W\|_{L_{\infty}(I)} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)} \\
& \times\left(\sqrt{2 \rho_{n}}+\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) 2 \sqrt{\frac{2}{n^{2} \rho_{n}}}\right) . \tag{46}
\end{align*}
$$

Choosing

$$
\rho_{n}:=\frac{\max _{1 \leqslant m \leqslant n} \alpha_{m}}{n}
$$

gives

$$
\begin{align*}
& \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \\
& \quad \leqslant 5\|f W\|_{L_{\infty}(I)} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)} \sqrt{\frac{\max _{1 \leqslant m \leqslant n} \alpha_{m}}{n}} . \tag{47}
\end{align*}
$$

We turn to a minor modification of the de la Vallee Poussin/Freud estimate before proving Theorem 4:

A simple alternative estimate for $s_{m}\left[f_{n}\right](x)$. Now for $|t-x| \leqslant \rho_{n}$, and $m \leqslant n$, the Cauchy-Schwarz inequality gives

$$
\begin{aligned}
\left|K_{m}(x, t)\right| & \leqslant \sqrt{K_{m}(x, x)} \sqrt{K_{m}(t, t)} \\
& \leqslant \sqrt{K_{n+1}(x, x)} \sqrt{K_{n+1}(t, t)} \\
& =\sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right)} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, t\right)} .
\end{aligned}
$$

Then from (39),

$$
\begin{align*}
\left|s_{m}\left[f_{n}\right](x)\right| W(x) \leqslant & \|f W\|_{L_{\infty}(I)} 2 \rho_{n} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)} \\
& \times \sqrt{\max _{|t-x| \leqslant \rho_{n}} \lambda_{n+1}^{-1}\left(W^{2}, t\right) W^{2}(t)} \tag{48}
\end{align*}
$$

Then instead of (46), we obtain

$$
\begin{aligned}
& \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \\
& \quad \leqslant\|f W\|_{L_{\infty}(I)} \sqrt{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)} \\
& \quad \times\left\{2 \rho_{n} \sqrt{\max _{|t-x| \leqslant \rho_{n}} \lambda_{n+1}^{-1}\left(W^{2}, t\right) W^{2}(t)}+\left(\max _{1 \leqslant m \leqslant n} \alpha_{m}\right) 2 \sqrt{\frac{2}{n^{2} \rho_{n}}}\right\} .
\end{aligned}
$$

Choosing

$$
\begin{equation*}
\rho_{n}:=\left(\frac{\max _{1 \leqslant m \leqslant n} \alpha_{m}}{n} \sqrt{\lambda_{n+1}\left(W^{2}, x\right) / W^{2}(x)}\right)^{2 / 3} \tag{49}
\end{equation*}
$$

gives

$$
\begin{align*}
& \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \\
& \leqslant \\
& \quad 3\|f W\|_{L_{\infty}(I)}\left(\frac{\max _{1 \leqslant m \leqslant n} \alpha_{m}}{n} \lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)\right)^{2 / 3} \tag{50}\\
& \quad \times\left[\max _{|t-x| \leqslant \rho_{n}}\left(\frac{\lambda_{n+1}^{-1}\left(W^{2}, t\right) W^{2}(t)}{\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)}\right)^{1 / 2}+1\right] .
\end{align*}
$$

Thus far, we have the estimates (47) and (50) for the strong ($C, 1$) means. Before we can choose which to apply, we need technical estimates for λ_{n+1}^{-1}, for α_{m} and so on. We use the standard notation \sim for sequences of real numbers: we write

$$
c_{n} \sim d_{n}
$$

if there exists positive constant C_{1}, C_{2} independent of n such that for the relevant range of n,

$$
C_{1} \leqslant c_{n} / d_{n} \leqslant C_{2} .
$$

Similar notation is used for functions and sequences of functions. Moreover, in the sequel, C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x, f. The same symbol does not necessarily denote the same constant in different occurrences.

Lemma 8. Let $W \in \mathscr{F}, \mathscr{E}$ or $\mathscr{E} \mathscr{X P}$. Then
(a)

$$
\begin{equation*}
\max _{1 \leqslant m \leqslant n} \alpha_{m} \sim \alpha_{n} \sim a_{n} . \tag{51}
\end{equation*}
$$

(b) Let $\eta, L>0$. There exists n_{0} such that uniformly for $n \geqslant n_{0}$ and for $|x| \leqslant a_{n}\left(1+L \delta_{n}\right)$,

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) \sim \frac{a_{n}}{n} W^{2}(x) \psi_{n}(x) . \tag{52}
\end{equation*}
$$

(c) Let $\eta>0$. There exists n_{0} such that uniformly for $n \geqslant n_{0}$ and for $|x| \leqslant a_{n}\left(1+L \delta_{n}\right)$,

$$
\begin{equation*}
|t-x| \leqslant \eta \frac{a_{n}}{n} \psi_{n}(x) \Rightarrow \psi_{n}(t) \sim \psi_{n}(x) \quad \text { and } \quad \phi_{n}(t) \sim \phi_{n}(x) . \tag{53}
\end{equation*}
$$

The constants in \sim are independent of n, x, t.
(d) There exists n_{0} such that for $n \geqslant n_{0}$

$$
\begin{equation*}
\frac{1}{2} \leqslant \frac{m}{n} \leqslant 2 \Rightarrow\left|1-\frac{a_{m}}{a_{n}}\right| \sim \frac{1}{T\left(a_{n}\right)}\left|1-\frac{m}{n}\right| . \tag{54}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
T\left(a_{n}\right) \sim T\left(a_{2 n}\right) ; \quad \delta_{n} \sim \delta_{2 n} ; \quad \delta_{n}^{-1 / 2}=o(n) . \tag{55}
\end{equation*}
$$

(e) Let $L>0$. There exists n_{0} such that uniformly for $n \geqslant n_{0}$ and for $|x| \leqslant a_{n}\left(1+L \delta_{n}\right)$,

$$
\begin{equation*}
\psi_{n}(x) \sim \psi_{n+1}(x) ; \quad \phi_{n}(x) \sim \phi_{n+1}(x) . \tag{56}
\end{equation*}
$$

(f) Let $L>0,0<p \leqslant \infty$. There exist C and n_{0} such that for $n \geqslant n_{0}$ and for $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\|P W\|_{L_{p}(I)} \leqslant C\|P W\|_{L_{p}\left(-a_{n}\left(1-L \delta_{n}\right), a_{n}\left(1-L \delta_{n}\right)\right)} . \tag{57}
\end{equation*}
$$

Moreover, if $r>1$, there exist $C_{1}, C_{2}>0$ such that for $n \geqslant 1$ and for $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\|P W\|_{L_{p}\left(I \backslash\left[a_{-m}, a_{m}\right]\right)} \leqslant C_{1} \exp \left(-C_{2} n T\left(a_{n}\right)^{-1 / 2}\right)\|P W\|_{L_{p}(I)} . \tag{58}
\end{equation*}
$$

Proof. (a) We note that since a_{m} increases with m, it suffices to show that

$$
\alpha_{m} \sim a_{m}, \quad m \geqslant 1 .
$$

For $W \in \mathscr{F}$, this is Theorem 12.3(b) in [9, p. 529]; for $W \in \mathscr{E}$, this is (10.33) in [12, p. 285]; for $W \in \mathscr{E} \mathscr{X} \mathscr{P}$, this follows from a far more general result of Rakhmanov [24] that for $W>0$ a.e. in [$-1,1$], $\alpha_{m} \rightarrow \frac{1}{2}, m \rightarrow \infty$.
(b) For $W \in \mathscr{F}$, Theorem 1.1 in [9, p. 465] states that

$$
\lambda_{n}\left(W^{2}, x\right) / W^{2}(x) \sim \frac{a_{n}}{n} \phi_{n}^{-1 / 2}(x) \sim \frac{a_{n}}{n}\left(\left|1-\frac{|x|}{a_{n}}\right|+n^{-2 / 3}\right)^{-1 / 2}
$$

for the relevant range of n and x. Note that for $W \in \mathscr{F}, A \leqslant T \leqslant B$, where A, B are as in (8), so

$$
\psi_{n}(x)=\frac{\phi_{n}(x)+T\left(a_{n}\right)^{-1}}{\sqrt{\phi_{n}(x)}} \sim \frac{1}{\sqrt{\phi_{n}(x)}} .
$$

Thus we have (52) in this case. Next, if $W \in \mathscr{E}$, Theorem 1.2 in [12, p. 204] implies that

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) / W^{2}(x) \sim \frac{a_{n}}{n} \max \left\{\sqrt{\phi_{n}(x)},\left[T\left(a_{n}\right) \sqrt{\phi_{n}(x)}\right]^{-1}\right\} \tag{59}
\end{equation*}
$$

for the relevant range of n and x. This is easily recast in the form (52). Finally, if $W \in \mathscr{E} \mathscr{X} \mathscr{P}$, Theorem 1.2 in [10, p. 7] again implies (59) and hence (52).
(c) In view of the form of ψ_{n}, it clearly suffices to show that $\phi_{n}(t) \sim$ $\phi_{n}(x)$ for the relevant range n, t, x. Let us denote the zeros of $p_{n}(x)=$ $p_{n}\left(W^{2}, x\right)$ by

$$
x_{n n}<x_{n-1, n}<\cdots<x_{2 n}<x_{1 n} .
$$

It is known for all three classes of weights that uniformly in n and j,

$$
\begin{equation*}
\phi_{n}\left(x_{j n}\right) \sim \phi_{n}\left(x_{j-1, n}\right) \text { and hence } \psi_{n}\left(x_{j n}\right) \sim \psi_{n}\left(x_{j-1, n}\right) \tag{60}
\end{equation*}
$$

For $W \in \mathscr{F}$, this is (11.10) in $[9$, p. 521]; for $W \in \mathscr{E}$, this is (9.9) in [12, p. 265]; and for $W \in \mathscr{E} \mathscr{X} \mathscr{P}$, this is (10.12), in [10, p. 111]. Next, for all three classes of weights it is known that uniformly in n and j;

$$
\begin{align*}
x_{j-1, n}-x_{j+1, n} & \sim \lambda_{j n} W^{-2}\left(x_{j n}\right) \\
& \sim \frac{a_{n}}{n} \psi_{n}\left(x_{j n}\right) ; \quad\left|1-\frac{x_{1 n}}{a_{n}}\right| \leqslant C \delta_{n} . \tag{61}
\end{align*}
$$

For $W \in \mathscr{F}$, this follows from (b) above and Corollary 1.2 in [9, pp. 466467]; for $W \in \mathscr{E}$, this follows from Corollary 1.3 in [12, p. 205]; and for $W \in \mathscr{E} \mathscr{X} \mathscr{P}$, this follows from Corollary 1.4 in [10, p. 9]. The monotonicity of ϕ_{n} in $\left[0, a_{n}\right]$ or $\left[-a_{n}, 0\right]$ and (60) and (61) then give the result.
(d) For $W \in \mathscr{F}$, these follow from Lemma 5.2(c) in [9, p. 478] (recall that $T \sim 1$ and $\delta_{n} \sim n^{-2 / 3}$ for this case); for $W \in \mathscr{E}$, these follow from Lemma 2.2 in [12, pp. 208-209]; and for $W \in \mathscr{E} \mathscr{X P}$, these follow from Lemma 3.2 in [10, p. 24-25].
(e) This follows easily from (d), which shows that

$$
\left|1-\frac{a_{n}}{a_{n+1}}\right| \sim \frac{1}{n T\left(a_{n}\right)}=o\left(\delta_{n}\right), \quad n \rightarrow \infty .
$$

(f) For $W \in \mathscr{F}$, (57) is Theorem 1.8 in [9, p. 469] while (58) follows easily from (7.14) in [9, p. 486] and (10.2) in [9, p. 512]; for $W \in \mathscr{E}$, (57) is Theorem 1.5 in [12, p. 206] while (58) follows from (4.18) in [12, p. 228] and (5.2) in [12, p. 231]; and for $W \in \mathscr{E} \mathscr{X} \mathscr{P}$, (57) is Theorem 1.7 in [10, p. 12] while (58) follows from (5.18) in [10, p.53] and (6.2) in [10, p. 57].

We proceed to:
Proof of Theorem 4 for $p=\infty$. Let us substitute the estimates of the last lemma in (47): we obtain for $|x| \leqslant a_{n}$,

$$
\begin{equation*}
\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \leqslant C\|f W\|_{L_{\infty}(I)} \psi_{n}^{-1 / 2}(x) \tag{62}
\end{equation*}
$$

Next, provided we choose ρ_{n} by (49), so that by Lemma 8(a), (b), (e),

$$
\begin{equation*}
\rho_{n} \sim \frac{a_{n}}{n} \psi_{n}(x)^{1 / 3} \tag{63}
\end{equation*}
$$

we have also from (50) and Lemma 8(a), (b), (e),

$$
\begin{aligned}
& \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \\
& \quad \leqslant C\|f W\|_{L_{\infty}(I)} \psi_{n}^{-2 / 3}(x)\left[\max _{|t-x| \leqslant \rho_{n}}\left(\frac{\psi_{n}(t)}{\psi_{n}(x)}\right)^{-1 / 2}+1\right] .
\end{aligned}
$$

Now if

$$
\psi_{n}(x) \geqslant \frac{1}{2},
$$

then (63) shows that

$$
\rho_{n} \leqslant C \frac{a_{n}}{n} \psi_{n}(x)
$$

and then from Lemma 8(c),

$$
\max _{|t-x| \leqslant \rho_{n}}\left(\frac{\psi_{n}(t)}{\psi_{n}(x)}\right)^{-1 / 2} \leqslant C .
$$

Thus

$$
\psi_{n}(x) \geqslant \frac{1}{2} \Rightarrow \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \leqslant C\|f W\|_{L_{\infty}(I)} \psi_{n}^{-2 / 3}(x) .
$$

This and (62) show that

$$
\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \max \left\{\psi_{n}^{1 / 2}, \psi_{n}^{2 / 3}\right\}(x) \leqslant C\|f W\|_{L_{\infty}(I)} .
$$

When $\psi_{n}(x)<\frac{1}{2}$, (62) shows that this inequality persists as then $\psi_{n}^{2 / 3}(x)<$ $\psi_{n}^{1 / 2}(x)$. Thus

$$
\begin{equation*}
\max _{|x| \leqslant a_{n}} \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| W(x) \max \left\{\psi_{n}^{1 / 2}, \psi_{n}^{2 / 3}\right\}(x) \leqslant C\|f W\|_{L_{\infty}(I)} . \tag{64}
\end{equation*}
$$

To extend this to the rest of I, we use infinite-finite range inequalities in the following way: let us suppose that there are polynomials R_{n} with the following properties:
(i) $\quad R_{n}$ has degree $O\left(\delta_{n}^{-1 / 2}\right)$;
(ii) $R_{n} \sim \Psi_{n}=\max \left\{\psi_{n}^{1 / 2}, \psi_{n}^{2 / 3}\right\}$ in $\left[-a_{n}, a_{n}\right]$;
(iii) $R_{n} \geqslant C \Psi_{n}$ in $I \backslash\left[-a_{n}, a_{n}\right]$.

We now use a device of J. Szabados [27] to apply the infinite-finite range inequalities: for any $\varepsilon_{m}= \pm 1$, (64) gives

$$
\max _{|x| \leqslant a_{n}}\left|\frac{1}{n} \sum_{m=1}^{n} \varepsilon_{m} s_{m}[f](x) R_{n}(x)\right| W(x) \leqslant C\|f W\|_{L_{\infty}(I)} .
$$

The expression is the $\left|\mid\right.$ is a polynomial of degree at most $\left[n+C \delta_{n}^{-1 / 2}\right]$ for some C (here $[x]$ denotes the integer part of x). But by (54) and then the third relation in (55),

$$
\left|1-\frac{a_{n}}{a_{\left[n+C \delta_{n}^{-1 / 2]}\right.}}\right| \sim \frac{\delta_{n}^{-1 / 2}}{n T\left(a_{n}\right)}=\delta_{n} \sim \delta_{\left[n+C \delta_{n}^{-1 / 2]}\right.}
$$

so for some $L>0$, if n is large enough,

$$
\begin{aligned}
& \quad \max _{|x| \leqslant a_{\left[n+C \delta \delta_{n}^{1 / 2}\right]\left(1-L \delta_{\left.\left[n+C \delta_{n}^{-1 / 2}\right]\right)}\right.}}\left|\frac{1}{n} \sum_{m=1}^{n} \varepsilon_{m} s_{m}[f](x) R_{n}(x)\right| W(x) \\
& \quad \leqslant C\|f W\|_{L_{\infty}(I)} .
\end{aligned}
$$

The infinite-finite range inequality (57) shows that as the choice $\varepsilon_{m}= \pm 1$ is arbitrary,

$$
\max _{x \in I} \frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[f](x)\right| R_{n}(x) W(x) \leqslant C\|f W\|_{L_{\infty}(I)} .
$$

Finally, since $\Psi_{n}=O\left(R_{n}\right)$ in I, we obtain (22). It remains to give
The Construction of the $\left\{R_{n}\right\}$ satisfying (i), (ii), (iii) above. Now $\Psi_{n} \sim \psi_{n}^{2 / 3}+\psi_{n}^{1 / 2}$, and $\psi_{n}=\sqrt{\phi_{n}}+1 /\left(T\left(a_{n}\right) \sqrt{\phi_{n}}\right)$ so it suffices to show the following: given $b \in \mathbb{R}$, there exist polynomials R_{n}^{*} such that

$$
\begin{aligned}
\left(\mathrm{i}^{*}\right) & R_{n}^{*} \text { has degree } O\left(\delta_{n}^{-1 / 2}\right) ; \\
\text { (ii*) } & R_{n}^{*} \sim \phi_{n}^{b} \text { in }\left[-a_{n}, a_{n}\right] ; \\
\text { (iii*) } & R_{n}^{*} \geqslant C \phi_{n}^{b} \text { in } I \backslash\left[-a_{n}, a_{n}\right] .
\end{aligned}
$$

We need only do this for $|b|<\frac{1}{2}$ (raising to suitable powers gives the general case). We use the Christoffel functions for the ultraspherical weight

$$
u(x):=\left(1-x^{2}\right)^{-b-(1 / 2)}, \quad x \in(-1,1) .
$$

Let us set

$$
\begin{aligned}
m & :=m(n):=\left[\delta_{n}^{-1 / 2}\right] ; \\
R_{n}^{\#}(x) & :=m^{-1} \lambda_{m}^{-1}(u, x) .
\end{aligned}
$$

It is well known that uniformly in m, x [21, p. 120]

$$
\begin{equation*}
R_{n}^{\#}(x) \sim\left(|1-|x||+m^{-2}\right)^{b} \quad \text { in }[-1,1] . \tag{65}
\end{equation*}
$$

Then it is easily seen that

$$
R_{n}^{*}(x):=R_{n}^{\#}\left(\frac{x}{a_{n}}\right)
$$

satisfies (i*), (ii*). To verify (iii*), it suffices to show that

$$
R_{n}^{\#}(x) \geqslant C\left(x-1+m^{-2}\right)^{b}, \quad x \in(1, \infty) .
$$

(Recall that $R_{n}^{\#}$ is even). Let ℓ denote the least integer $\geqslant b / 2$. Let $p_{j}^{\#}$ denote the j th orthonormal polynomial for u, so that its zeros lie in $(-1,1)$, and for some integer j_{0} and $C_{1}>0, p_{j}^{\#}$ has at least ℓ zeros in [$\left.1-\left(C_{1} j\right)^{-2}, 1\right]$ for $j \geqslant j_{0}$. See, for example, [21, Thm. 22, p. 167]. Then for $j \geqslant j_{0}$ and $x>1$,

$$
\frac{p_{j}^{\#}(x)}{p_{j}^{\#}(1)}=\prod_{y: p_{j}^{\neq}(y)=0}\left(1+\frac{x-1}{1-y}\right) \geqslant\left(1+\left(C_{1} j\right)^{2}(x-1)\right)^{\ell} .
$$

Let $\eta \in(0,1)$. Then for $x>1, m \geqslant j_{0} / \eta$,

$$
\begin{aligned}
\lambda_{m}^{-1}(u, x) & >\sum_{j=[\eta m]+1}^{m-1}\left(p_{j}^{\#}(x)\right)^{2} \\
& \geqslant\left(1+\left(C_{1} \eta m\right)^{2}(x-1)\right)^{b} \sum_{j=[\eta m]+1}^{m-1}\left(p_{j}^{\#}(1)\right)^{2} .
\end{aligned}
$$

It follows easily from the fact that $|b|<\frac{1}{2}$ and from the estimate

$$
k^{-1} \lambda_{k}^{-1}(u, 1) \sim k^{-2 b}, \quad k \geqslant 1,
$$

that if η is small enough,

$$
\sum_{j=[\eta m]+1}^{m-1}\left(p_{j}^{\#}(1)\right)^{2} \sim \sum_{j=0}^{m-1}\left(p_{j}^{\#}(1)\right)^{2}=\lambda_{m}^{-1}(u, 1) \sim m^{1-2 b}
$$

and hence that for $x>1$,

$$
\begin{aligned}
R_{n}^{\#}(x) & =m^{-1} \lambda_{m}^{-1}(u, x) \\
& \geqslant\left(1+\left(c_{1} \eta m\right)^{2}(x-1)\right)^{b} m^{-2 b} \geqslant C\left(x-1+m^{-2}\right)^{b},
\end{aligned}
$$ as desired.

The extension from $p=\infty$ to $1 \leqslant p<\infty$ is entirely standard [6], but we provide the details:

The proof of Theorem 4 for $p=1$. Now

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{m=1}^{n} s_{m}[f] W\right\|_{L_{1}(I)} & =\sup _{\|g W\|_{L_{\infty}(I)} \leqslant 1} \int_{I}\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f] W\right) g W \\
& =\sup _{\|g W\|_{L_{\infty}(I)} \leqslant 1} \frac{1}{n} \sum_{m=1}^{n} \int_{I} s_{m}[f] g W^{2} \\
& =\sup _{\|g W\|_{L_{\infty}(I)} \leqslant 1} \frac{1}{n} \sum_{m=1}^{n} \int_{I} f s_{m}[g] W^{2}
\end{aligned}
$$

by self-adjointness of s_{m} (this follows easily from orthogonality). We continue this as

$$
\begin{aligned}
& \leqslant \sup _{\|g\|_{L_{\infty}(I)} \leqslant 1} \frac{1}{n} \sum_{m=1}^{n} \int_{I}\left|f W \Psi_{n}^{-1}\right|\left|s_{m}[g] W \Psi_{n}\right| \\
& \leqslant \sup _{\|g W\|_{L_{\infty}(I)} \leqslant 1} \int_{I}\left|f W \Psi_{n}^{-1}\right|\left\|\frac{1}{n} \sum_{m=1}^{n}\left|s_{m}[g] W \Psi_{n}\right|\right\|_{L_{\infty}(I)} \\
& \leqslant C \int_{I}\left|f W \Psi_{n}^{-1}\right|
\end{aligned}
$$

by our result for $p=\infty$.
Finally, we use weighted interpolation to treat the case $1<p<\infty$:
Proof of Theorem 4 for $1<p<\infty$. One applies a theorem of E. M. Stein [2, p. 213] on interpolation in weighted spaces. More specifically, if

$$
\tau[f]:=\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]
$$

and

$$
\begin{array}{llll}
q_{0}:=1 ; & p_{0}:=1 ; & v_{0}:=W ; & u_{0}:=W \Psi_{n}^{-1} ; \\
q_{1}:=\infty ; & p_{1}:=\infty ; & v_{1}:=W \Psi_{n} ; & u_{1}:=W,
\end{array}
$$

we have shown that for $i=0,1$ and some C independent of f, n, i

$$
\left\|\tau[f] v_{i}\right\|_{L_{q_{i}}(I)} \leqslant C\left\|f u_{i}\right\|_{L_{p_{i}}(I)}
$$

and hence if $0<\theta<1$ and

$$
\begin{aligned}
& \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}=1-\theta ; \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}=1-\theta ; \\
& u:=u_{0}^{1-\theta} u_{1}^{\theta} ; \quad v:=v_{0}^{1-\theta} v_{1}^{\theta}
\end{aligned}
$$

then

$$
\|\tau[f] v\|_{L_{q}(I)} \leqslant C\|f u\|_{L_{p}(I)} .
$$

This is easily reformulated as (21).

Deduction of Corollary 5. Suppose first that $1 \leqslant p<\infty$. Recall that for Freud weights $T \sim 1$ so in $\left[-a_{n}, a_{n}\right]$,

$$
\begin{aligned}
\psi_{n} & =\frac{\phi_{n}+T\left(a_{n}\right)^{-1}}{\sqrt{\phi_{n}}} \sim \frac{1}{\sqrt{\phi_{n}}} \geqslant C \\
& \Rightarrow \Psi_{n}=\max \left\{\psi_{n}^{1 / 2}, \psi_{n}^{2 / 3}\right\} \sim \psi_{n}^{2 / 3} \sim \phi_{n}^{-1 / 3} .
\end{aligned}
$$

Moreover, $\Psi_{n} \geqslant C \phi_{n}^{-1 / 3}$ in $I \backslash\left[-a_{n}, a_{n}\right]$. Then

$$
\begin{aligned}
& \left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \phi_{n}^{-(1-1 / p) / 3}\right\|_{L_{p}(I)} \\
& \quad \leqslant C\left\|\left(\frac{1}{n} \sum_{m=1}^{n} s_{m}[f]\right) W \Psi_{n}^{1-1 / p}\right\|_{L_{p}(I)} \\
& \quad \leqslant C\left\|f W \Psi_{n}^{-1 / p}\right\|_{L_{p}(I)} \leqslant C\left\|f W \phi_{n}^{1 /(3 p)}\right\|_{L_{p}(I)} .
\end{aligned}
$$

Here we have used (21). The case $p=\infty$ is easier.

3. ESTIMATE OF AN ORTHONORMAL POLYNOMIAL SUM

In this section, we prove:

Theorem 9. Let $W \in \mathscr{F}$ and assume that for some $\beta>0$,

$$
\frac{\alpha_{n}}{a_{n}}=\frac{1}{2}+O\left(n^{-\beta}\right) .
$$

Then for $n \geqslant 1$ and $x \in \mathbb{R}$,

$$
\begin{align*}
& \sum_{m=1}^{n}\left(p_{m+1}-p_{m-1}\right)^{2}(x) W^{2}(x) \\
& \quad \leqslant C \frac{n}{a_{n}} \phi_{n}(x)^{\min \{3 / 2,1 / 2+3 \beta / 2,3 / 4(1+\beta)\}} . \tag{66}
\end{align*}
$$

We begin with a simple consequence of the recurrence relation:

Lemma 10.

$$
\begin{align*}
\sum_{m=1}^{n} & \alpha_{m}\left(p_{m}-p_{m-1}\right)^{2}(x) \\
& =\sum_{m=1}^{n-1} p_{m}^{2}(x)\left(\alpha_{m}+\alpha_{m+1}-x\right)+p_{0}^{2}(x)\left(\alpha_{1}-x\right) \\
& \quad+\alpha_{n} p_{n}(x)\left(p_{n}-p_{n-1}\right)(x) . \tag{67}
\end{align*}
$$

Proof. Recall the recurrence relation

$$
x p_{m-1}(x)=\alpha_{m} p_{m}(x)+\alpha_{m-1} p_{m-2}(x) .
$$

Multiplying this by $p_{m-1}(x)$ and adding for $m=1,2, \ldots, n$ gives

$$
x \sum_{m=1}^{n} p_{m-1}^{2}(x)=\sum_{m=1}^{n} \alpha_{m} p_{m}(x) p_{m-1}(x)+\sum_{m=1}^{n} \alpha_{m-1} p_{m-2}(x) p_{m-1}(x) .
$$

Changing the index of summation from m to $m-1$ in the sum on the left and the second sum on the right gives

$$
x \sum_{m=0}^{n-1} p_{m}^{2}(x)=2 \sum_{m=1}^{n} \alpha_{m} p_{m}(x) p_{m-1}(x)-\alpha_{n} p_{n}(x) p_{n-1}(x),
$$

recall $p_{-1}=0$. Then

$$
\begin{aligned}
& \sum_{m=1}^{n} \alpha_{m}\left(p_{m}-p_{m-1}\right)^{2}(x) \\
& \quad=\sum_{m=1}^{n} \alpha_{m} p_{m}^{2}(x)+\sum_{m=1}^{n} \alpha_{m} p_{m-1}^{2}(x)-2 \sum_{m=1}^{n} \alpha_{m} p_{m}(x) p_{m-1}(x) \\
& \quad=\sum_{m=1}^{n-1}\left(\alpha_{m}+\alpha_{m+1}\right) p_{m}^{2}(x)+\alpha_{n} p_{n}^{2}(x) \\
& \quad+\alpha_{1} p_{0}^{2}(x)-x \sum_{m=0}^{n-1} p_{m}^{2}(x)-\alpha_{n} p_{n}(x) p_{n-1}(x) .
\end{aligned}
$$

Then (67) follows.
Surprisingly the most troublesome term on the right-hand side of (67) is the third term. This is handled in the following lemma: there and in the sequel, we assume that $W \in \mathscr{F}$, that (28) holds, and we shall use the estimates [9, Cor. 1.4, p. 467]

$$
\begin{equation*}
\left|p_{n} W\right|(x) \leqslant C a_{n}^{-1 / 2} \phi_{n}^{-1 / 4}(x), \quad x \in \mathbb{R}, \quad n \geqslant 1 \tag{68}
\end{equation*}
$$

and [9, Lemma 5.2(a), p. 478]

$$
\begin{equation*}
\frac{a_{2 n}}{a_{n}} \geqslant C>1, \quad n \geqslant 1 . \tag{69}
\end{equation*}
$$

Lemma 11. For $x \in\left[0, a_{n}\right]$,

$$
\begin{equation*}
\left|p_{n}-p_{n-1}\right|(x) W(x) \leqslant C n^{\max \{0,(1-\beta) / 2\}} a_{n}^{-1 / 2} \phi_{n}^{1 / 4}(x) . \tag{70}
\end{equation*}
$$

Proof. We consider two ranges of x :
(i) $x \in\left[0, \frac{1}{2} a_{n}\right]$

Here $\phi_{n}(x) \sim 1$ and the desired estimate follows from (68).
(ii) $x \in\left(\frac{1}{2} a_{n}, a_{n}\right]$

We use the Dombrowski-Fricke identity [4, 5, 22] in the form

$$
\begin{aligned}
\Gamma_{n}(x) & :=\frac{1}{\alpha_{n}^{2}} \sum_{k=0}^{n-1}\left(\alpha_{k+1}^{2}-\alpha_{k}^{2}\right) p_{k}^{2}(x) \\
& =\left(p_{n}-p_{n-1}\right)^{2}(x)+2 p_{n-1}(x) p_{n}(x)\left(1-\frac{x}{2 \alpha_{n}}\right) .
\end{aligned}
$$

This gives

$$
\begin{align*}
\Gamma_{n}(x) & W^{2}(x) \\
= & \left(\left(p_{n}-p_{n-1}\right) W\right)^{2}(x)+2\left(p_{n-1} p_{n} W^{2}\right)(x)\left(\left[1-\frac{x}{a_{n}}\right]+O\left(n^{-\beta}\right)\right) \\
= & \left(\left(p_{n}-p_{n-1}\right) W\right)^{2}(x)+O\left(a_{n}^{-1} \phi_{n}(x)^{1 / 2}\right) \\
& +O\left(a_{n}^{-1} \phi_{n}(x)^{-1 / 2} n^{-\beta}\right) . \tag{71}
\end{align*}
$$

Here we have used (68), (56) and our hypothesis (28). Next, that hypothesis gives for $0 \leqslant k \leqslant n-1$,

$$
\begin{aligned}
\alpha_{k+1}^{2}-\alpha_{k}^{2} & =\alpha_{k+1}^{2}\left(1-\left[\frac{a_{k}}{a_{k+1}}\right]^{2}\left[\frac{\alpha_{k} / a_{k}}{\alpha_{k+1} / a_{k+1}}\right]^{2}\right) \\
& =\alpha_{k+1}^{2}\left(1-\left[1+O\left(\frac{1}{k+1}\right)\right]^{2}\left[1+O\left((k+1)^{-\beta}\right)\right]^{2}\right) \\
& \leqslant C a_{n}^{2}(k+1)^{-\min \{1, \beta\}} .
\end{aligned}
$$

Here we have used not only (28) but also (54) (recall $T \sim 1$ for $W \in \mathscr{F}$). Then from (51), we obtain

$$
\Gamma_{n}(x) \leqslant C \sum_{k=0}^{n-1}(k+1)^{-\min \{1, \beta\}} p_{k}^{2}(x) .
$$

Recall that $x>\frac{1}{2} a_{n}$. Now from (69), there exists ε_{1} independent of n, such that for large enough n,

$$
\frac{1}{2} a_{n} \geqslant a_{2 \varepsilon_{1} n} .
$$

We then use (58) of Lemma 8 applied to W^{2} rather than W to deduce that

$$
\begin{aligned}
W^{2}(x) & \sum_{k=0}^{\left[\varepsilon_{1} n\right]-1}(k+1)^{-\min \{1, \beta\}} p_{k}^{2}(x) \\
& \leqslant W^{2}(x) \sum_{k=0}^{\left[\varepsilon_{1} n\right]-1} p_{k}^{2}(x) \\
& =W^{2}(x) \lambda_{\left[\varepsilon_{1} n\right]}^{-1}\left(W^{2}, x\right) \\
& \leqslant C_{1} \exp \left(-C_{2} n\right) \sup _{t \in \mathbb{R}} W^{2}(t) \lambda_{\left[\varepsilon_{1} n\right]}^{-1}\left(W^{2}, t\right) \\
& \leqslant C_{3} \exp \left(-C_{4} n\right) .
\end{aligned}
$$

Next,

$$
\begin{aligned}
W^{2}(x) \sum_{k=\left[\varepsilon_{1} n\right]}^{n-1}(k+1)^{-\min \{1, \beta\}} p_{k}^{2}(x) & \leqslant C n^{-\min \{1, \beta\}} W^{2}(x) \lambda_{n}^{-1}\left(W^{2}, x\right) \\
& \leqslant C n^{-\min \{1, \beta\}} \frac{n}{a_{n}} \phi_{n}(x)^{1 / 2},
\end{aligned}
$$

recall that $\psi_{n} \sim \phi_{n}^{-1 / 2}$ for Freud weights. Thus, the last two estimates yield

$$
\begin{equation*}
\Gamma_{n}(x) W^{2}(x) \leqslant C n^{-\min \{1, \beta\}} \frac{n}{a_{n}} \phi_{n}(x)^{1 / 2} \tag{72}
\end{equation*}
$$

and hence from (71),

$$
\begin{align*}
& \left(\left(p_{n}-p_{n-1}\right) W\right)^{2}(x) \\
& \quad \leqslant C\left[n^{-\min \{1, \beta\}} \frac{n}{a_{n}} \phi_{n}(x)^{1 / 2}+a_{n}^{-1} \phi_{n}(x)^{-1 / 2} n^{-\beta}\right] . \tag{73}
\end{align*}
$$

Now by definition of ϕ_{n},

$$
\begin{equation*}
n^{-1} \leqslant C \phi_{n}^{3 / 2} \tag{74}
\end{equation*}
$$

and it then follows that the first term in the right-hand side of (73) is the larger one (apart from a constant), so we obtain (70).

For future use, we record the estimate effectively proved in the above lemma: for $\Delta>0$,

$$
\begin{equation*}
W^{2}(x) \sum_{k=0}^{n-1}(k+1)^{-\Delta} p_{k}^{2}(x) \leqslant C n^{1-\Delta} a_{n}^{-1} \phi_{n}(x)^{1 / 2} \quad x \in\left[\frac{1}{2} a_{n}, a_{n}\right] . \tag{75}
\end{equation*}
$$

The next step in the proof of Theorem 9 is:
Lemma 12. For $x \in\left[0, a_{n}\right]$,

$$
\begin{align*}
& \sum_{m=1}^{n-1} \alpha_{m}\left(p_{m}-p_{m-1}\right)^{2}(x) W^{2}(x) \\
& \quad \leqslant n \phi_{n}(x)^{\min \{3 / 2,1 / 2+(3 / 2) \beta, 3 / 4(\beta+1)\}} . \tag{76}
\end{align*}
$$

Proof. For $x \in\left[0, \frac{1}{2} a_{n}\right]$, the estimate follows easily from (51), (52) since $\phi_{n}(x) \sim 1$. We now assume that $x \in\left[\frac{1}{2} a_{n}, a_{n}\right]$. We use (28). Now for $m \leqslant n-1$,

$$
\alpha_{m}+\alpha_{m+1}-x \leqslant \frac{a_{m}}{2}+\frac{a_{m+1}}{2}-x+O\left(\frac{a_{m+1}}{m^{\beta}}\right) \leqslant a_{n}-x+O\left(\frac{a_{n}}{m^{\beta}}\right),
$$

so

$$
\begin{aligned}
& W^{2}(x) \sum_{m=1}^{n-1} p_{m}^{2}(x)\left(\alpha_{m}+\alpha_{m+1}-x\right) \\
& \quad \leqslant\left(a_{n}-x\right) W^{2}(x) \lambda_{n}^{-1}\left(W^{2}, x\right)+C a_{n} W^{2}(x) \sum_{m=1}^{n-1} \frac{p_{m}^{2}(x)}{m^{\beta}} \\
& \quad \leqslant \operatorname{Cn} \phi_{n}(x)^{3 / 2}+\operatorname{Cn}^{1-\beta} \phi_{n}(x)^{1 / 2}
\end{aligned}
$$

by (52), (75). Using (74), we continue this as

$$
\begin{align*}
& W^{2}(x) \sum_{m=1}^{n-1} p_{m}^{2}(x)\left(\alpha_{m}+\alpha_{m+1}-x\right) \\
& \quad \leqslant \operatorname{Cn} \phi_{n}(x)^{\min \{3 / 2,1 / 2+(3 / 2) \beta\}} . \tag{77}
\end{align*}
$$

Next, combining (68) and (70) gives

$$
\begin{aligned}
& W^{2}(x) \\
& \quad \alpha_{n}\left|p_{n}(x)\left(p_{n}-p_{n-1}(x)\right)\right| \\
& \quad \leqslant C^{\max \{0,(1-\beta) / 2\}} \leqslant C n \cdot n^{-\min \{1,(\beta+1) / 2\}} \\
& \quad \leqslant
\end{aligned} \operatorname{Cn}_{n}(x)^{(3 / 2) \min \{1,(\beta+1) / 2\}} .
$$

Finally,

$$
W^{2}(x) p_{0}^{2}(x)\left|\alpha_{1}-x\right| \leqslant C \leqslant \operatorname{Cn} \phi_{n}(x)^{3 / 2} .
$$

Combining the last three estimates and (67) gives the result.
We turn to
The Proof of Theorem 9. Firstly for $x \in\left[0, \frac{1}{4} a_{n}\right]$,

$$
\sum_{m=1}^{n}\left(p_{m+1}-p_{m-1}\right)^{2}(x) W^{2}(x) \leqslant 4 \lambda_{n+2}^{-1}\left(W^{2}, x\right) W^{2}(x) \leqslant C \frac{n}{a_{n}}
$$

and then (66) follows as $\phi_{n}(x) \sim 1$. We now assume that $x \in\left[\frac{1}{4} a_{n}, a_{n}\right]$. Let $\varepsilon_{0} \in\left(0, \frac{1}{2}\right)$. Since

$$
\left(p_{m+1}-p_{m-1}\right)^{2} \leqslant 2\left(p_{m+1}-p_{m}\right)^{2}+2\left(p_{m}-p_{m-1}\right)^{2}
$$

we obtain from (51) and then Lemma 12 and (56), that

$$
\begin{aligned}
\sum_{m=\left[\varepsilon_{0} n\right]}^{n} & \left(p_{m+1}-p_{m-1}\right)^{2}(x) W^{2}(x) \\
\leqslant & \frac{C}{a_{n}}\left[\sum_{m=\left[\varepsilon_{0} n\right]}^{n} \alpha_{m+1}\left(p_{m+1}-p_{m}\right)^{2}(x) W^{2}(x)\right. \\
& \left.+\sum_{m=\left[\varepsilon_{0} n\right]}^{n} \alpha_{m}\left(p_{m}-p_{m-1}\right)^{2}(x) W^{2}(x)\right] \\
\leqslant & C \frac{n}{a_{n}} \phi_{n}(x)^{\min \{3 / 2,1 / 2+(3 / 2) \beta, 3 / 4(\beta+1)\}} .
\end{aligned}
$$

If we choose ε_{0} small enough, then it follows as in the proof of (72) of Lemma 11 that the contribution of the terms with $m<\left[\varepsilon_{0} n\right]$ is negligible. Thus we have the desired estimate (66) for $x \in\left[0, a_{n}\right]$ and hence for all $x \in\left[-a_{n}, a_{n}\right]$, recall that $\left(p_{m+1}-p_{m-1}\right)^{2}$ is even. To extend the estimate to the whole real line, one uses the same trick as in the proof of Theorem 4 for $p=\infty$: one approximates powers of ϕ_{n} by polynomials R_{n} of degree $O\left(\delta_{n}^{-1 / 2}\right)=O\left(n^{1 / 3}\right)$, and then uses infinite-finite range inequalities.

We shall actually apply not Theorem 9, but a simple consequence thereof:

Corollary 13. Let $W \in \mathscr{F}$ and assume that for some $\beta>0$,

$$
\frac{\alpha_{n}}{a_{n}}=\frac{1}{2}+O\left(n^{-\beta}\right) .
$$

Then for $n \geqslant 1$ and $x \in \mathbb{R}$,

$$
\begin{align*}
& \sum_{m=1}^{n}\left(p_{m+1}-\frac{\alpha_{m}}{\alpha_{m+1}} p_{m-1}\right)^{2}(x) W^{2}(x) \\
& \leqslant C \frac{n}{a_{n}} \phi_{n}(x)^{\min \{3 / 2,1 / 2+3 \beta / 2,3 / 4(1+\beta)\}} . \tag{78}
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
\left(p_{m+1}-\frac{\alpha_{m}}{\alpha_{m+1}} p_{m-1}\right)^{2} & \leqslant 2\left(p_{m+1}-p_{m-1}\right)^{2}+2\left(1-\frac{\alpha_{m}}{\alpha_{m+1}}\right)^{2} p_{m-1}^{2} \\
& \leqslant 2\left(p_{m+1}-p_{m-1}\right)^{2}+C m^{-2 \min \{1, \beta\}} p_{m-1}^{2} .
\end{aligned}
$$

Here for $x \in\left[\frac{1}{2} a_{n}, a_{n}\right]$, (75) gives

$$
\begin{aligned}
W^{2}(x) \sum_{m=1}^{n} m^{-2 \min \{1, \beta\}} p_{m-1}^{2}(x) & \leqslant C n^{1-2 \min \{1, \beta\}} a_{n}^{-1} \phi_{n}(x)^{1 / 2} \\
& \leqslant C \frac{n}{a_{n}} \phi_{n}(x)^{3 \min \{1, \beta\}+1 / 2}
\end{aligned}
$$

and the rest of the details follow as before.

4. PROOF OF THEOREM 6

Throughout, we assume the hypotheses of Theorem 6. We shall also assume that the sequence ρ_{n} decays to 0 no faster than some negative power of n. The proof is based on:

An alternative estimate for $s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x)$. The alternative estimate involves a simple change of indices in summation, that has been employed several times before (for example in [17]); we do not know who
first used it. Recall the notation (1), (44) and the abbreviation $b_{m}=b_{m}\left(F_{n}\right)$. Then

$$
\begin{align*}
& \frac{1}{n} \sum_{m=1}^{n} s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x) \\
& \quad=\frac{1}{n}\left[\sum_{m=1}^{n} \alpha_{m} p_{m} b_{m-1}-\sum_{m=1}^{n} \alpha_{m} p_{m-1} b_{m}\right] \\
& \quad=\frac{1}{n}\left[\sum_{m=0}^{n-1} \alpha_{m+1} p_{m+1} b_{m}-\sum_{m=1}^{n} \alpha_{m} p_{m-1} b_{m}\right] \\
& \quad=\frac{1}{n}\left[\sum_{m=1}^{n-1} b_{m}\left(\alpha_{m+1} p_{m+1}-\alpha_{m} p_{m-1}\right)+\alpha_{1} p_{1} b_{0}-\alpha_{n} p_{n-1} b_{n}\right] \\
& \quad:=T^{(1)}+T^{(2)}+T^{(3)} . \tag{79}
\end{align*}
$$

Estimation of $T^{(1)}$. Here

$$
\begin{aligned}
\left|T^{(1)}\right| & =\frac{1}{n}\left|\sum_{m=1}^{n-1} b_{m}\left(\alpha_{m+1} p_{m+1}-\alpha_{m} p_{m-1}\right)\right| \\
& \leqslant \frac{1}{n} \sqrt{\sum_{m=1}^{n-1} b_{m}^{2}} \sqrt{\sum_{m=1}^{n-1}\left(\alpha_{m+1} p_{m+1}-\alpha_{m} p_{m-1}\right)^{2}} \\
& \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})} \sqrt{\frac{a_{n}^{2}}{n^{2} \rho_{n}}} \sqrt{\sum_{m=1}^{n}\left(p_{m+1}-\frac{\alpha_{m}}{\alpha_{m+1}} p_{m-1}\right)^{2}}
\end{aligned}
$$

exactly as in the de la Vallee Poussin estimate for $s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x)$ (see (44-45)). Using Corollary 13, we continue this as

$$
\begin{align*}
& \left|T^{(1)} W\right|(x) \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})} \sqrt{\frac{a_{n}}{n \rho_{n}}} \sqrt{\phi_{n}(x)^{\min \{3 / 2,1 / 2+3 \beta / 2,3 / 4(1+\beta)\}}}, \\
& x \in \mathbb{R} . \tag{80}
\end{align*}
$$

Estimation of $T^{(2)}$. Next,

$$
\left|b_{0}\right|=\left|\int_{I} F_{n} p_{0} W^{2}\right| \leqslant\|f W\|_{L_{\infty}(\mathbb{R})} \gamma_{0} \int_{|t-x| \geqslant \rho_{n}} \frac{W(t)}{|t-x|} d t .
$$

We consider separately two ranges of x :
(I) x such that $a_{n} \phi_{n}(x) \geqslant 1$.

Then we estimate

$$
\begin{aligned}
\left|b_{0}\right| \leqslant & \|f W\|_{L_{\infty}(\mathbb{R})} \gamma_{0}\left(W(0) \int_{\rho_{n} \leqslant|t-x|<a_{n} \phi_{n}(x)} \frac{d t}{|t-x|}\right. \\
& \left.+\frac{1}{a_{n} \phi_{n}(x)} \int_{|t-x| \geqslant a_{n} \phi_{n}(x)} W(t) d t\right) \\
\leqslant & C\|f W\|_{L_{\infty}(\mathbb{R})}\left(\log ^{+}\left(\frac{a_{n} \phi_{n}(x)}{\rho_{n}}\right)+1\right) .
\end{aligned}
$$

Here we set

$$
\log ^{+} t:=\max \{0, \log t\} .
$$

(II) x such that $a_{n} \phi_{n}(x)<1$

Then

$$
\left|1-\frac{x}{a_{n}}\right|<\frac{1}{a_{n}}<\frac{1}{2}
$$

for large enough n, so that $|t-x| \leqslant 1 \Rightarrow W(t)$ is geometrically small:

$$
|t-x| \leqslant 1 \Rightarrow W(t) \leqslant \exp \left(-C_{1} n\right) .
$$

(See [9, Lemma 5.1(c), p. 477]). Then we estimate

$$
\begin{aligned}
\left|b_{0}\right| & \leqslant\|f W\|_{L_{\infty}(\mathbb{R})} \gamma_{0}\left(\exp \left(-C_{1} n\right) \log ^{+}\left(\frac{1}{\rho_{n}}\right)+\int_{|t-x| \geqslant 1} W(t) d t\right) \\
& \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})}\left(\log ^{+}\left(\frac{a_{n} \phi_{n}(x)}{\rho_{n}}\right)+1\right) .
\end{aligned}
$$

(Recall our hypothesis $\rho_{n} \geqslant n^{-C}$). Thus we have this estimate in all cases and hence

$$
\begin{align*}
\left|T^{(2)} W\right|(x) & =\frac{1}{n}\left|\alpha_{1} p_{1}(x) b_{0}\right| W(x) \\
& \leqslant \frac{C}{n}\|f W\|_{L_{\infty}(\mathbb{R})}\left(\log ^{+}\left(\frac{a_{n} \phi_{n}(x)}{\rho_{n}}\right)+1\right) . \tag{81}
\end{align*}
$$

Estimation of $T^{(3)}$. It is more difficult to estimate b_{n} :

$$
\begin{align*}
\left|b_{n}\right|= & \left|\int_{I} F_{n} p_{n} W^{2}\right| \\
\leqslant & C\|f W\|_{L_{\infty}(\mathbb{R})}\left(a_{n}^{-1 / 2} \int_{\rho_{n} \leqslant|t-x| \leqslant(1 / 4) a_{n}} \frac{\phi_{n}(t)^{-1 / 4}}{|t-x|} d t\right. \\
& \left.+a_{n}^{-1} \int_{|t-x|>(1 / 4) a_{n}}\left|p_{n} W\right|(t) d t\right) \\
\leqslant & C\|f W\|_{L_{\infty}(\mathbb{R})}\left(a_{n}^{-1 / 2} \int_{\rho_{n} \leqslant|t-x| \leqslant(1 / 4) a_{n}} \frac{\phi_{n}(t)^{-1 / 4}}{|t-x|} d t+a_{n}^{-1 / 2}\right) . \tag{82}
\end{align*}
$$

Here we have used an estimate for the L_{1} norm of $p_{n} W$ from [15, Thm. 1, p. 44]. In subsequent estimation, we consider $x \geqslant 0$, and consider two subcases:
(I) $x \in\left[0,1 / 4 a_{n}\right]$

Here $|t-x| \leqslant \frac{1}{4} a_{n} \Rightarrow|t| \leqslant \frac{1}{2} a_{n}$, so that $\phi_{n}(t) \sim 1$ and we obtain

$$
\begin{equation*}
\left|b_{n}\right|<C\|f W\|_{L_{\infty}(\mathbb{R})} a_{n}^{-1 / 2}\left[\log ^{+}\left(\frac{a_{n}}{4 \rho_{n}}\right)+1\right] . \tag{83}
\end{equation*}
$$

(II) $x \in\left[\frac{1}{4} a_{n}, a_{n}\left(1-n^{-2 / 3}\right)\right]$

Here $|t-x| \leqslant \frac{1}{4} a_{n} \Rightarrow t \geqslant 0$ and $\phi_{n}(t) \sim 1-\left(t / a_{n}\right)$ so that

$$
\begin{aligned}
\int_{\rho_{n}} \leqslant|t-x| \leqslant(1 / 4) a_{n} & \frac{\phi_{n}(t)^{-1 / 4}}{|t-x|} d t \\
& \sim \int_{\rho_{n} \leqslant|t-x|<(1 / 4) a_{n}} \frac{\left|1-\frac{t}{a_{n}}\right|^{-1 / 4}}{a_{n}\left|\left(1-\frac{t}{a_{n}}\right)-\left(1-\frac{x}{a_{n}}\right)\right|} d t \\
& =\left(1-\frac{x}{a_{n}}\right)^{-1 / 4} \int_{\left(\rho_{n} / a_{n}\left(1-\left(x / a_{n}\right)\right)\right) \leqslant|s-1| \leqslant\left(1 / 4\left(1-\left(x / a_{n}\right)\right)\right)} \frac{|s|^{-1 / 4}}{|1-s|} d s \\
& \leqslant C\left(1-\frac{x}{a_{n}}\right)^{-1 / 4}\left[\log +\frac{a_{n}\left(1-\frac{x}{\rho_{n}}\right)}{\rho_{n}}+1\right],
\end{aligned}
$$

by first the substitution $1-\left(t / a_{n}\right)=s\left(1-\left(x / a_{n}\right)\right)$ and then some straightforward estimation. Together with our estimates (82), (83), this shows that for all $x \in\left[0, a_{n}\left(1-n^{2 / 3}\right)\right]$,

$$
\left|b_{n}\right| \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})} a_{n}^{-1 / 2} \phi_{n}(x)^{-1 / 4}\left[\log ^{+} \frac{a_{n} \phi_{n}(x)}{\rho_{n}}+1\right] .
$$

Then for $|x| \leqslant a_{n}\left(1-n^{-2 / 3}\right)$,

$$
\begin{aligned}
\left|T^{(3)} W\right|(x) & =\frac{1}{n}\left|\alpha_{n} p_{n-1}(x) W(x) b_{n}\right| \\
& \leqslant \frac{C}{n}\|f W\|_{L_{\infty}(\mathbb{R})} \phi_{n}(x)^{-1 / 2}\left[\log ^{+} \frac{a_{n} \phi_{n}(x)}{\rho_{n}}+1\right] .
\end{aligned}
$$

We obtain from (79)-(81) and this last estimate that for $|x| \leqslant$ $a_{n}\left(1-n^{-2 / 3}\right)$,

$$
\begin{align*}
& \left|\frac{1}{n} \sum_{m=1}^{n} s_{m}\left[F_{n}(\cdot)(x-\cdot)\right](x)\right| W(x) \\
& \leqslant \\
& \quad C\|f W\|_{L_{\infty}(\mathbb{R})}\left\{\sqrt{\frac{a_{n}}{n \rho_{n}}} \phi_{n}(x)^{\min \{3 / 4,1 / 4+3 \beta / 4,3 / 8(1+\beta)\}}\right. \tag{84}\\
& \left.\quad+n^{-1} \phi_{n}^{-1 / 2}(x)\left[\log ^{+} \frac{a_{n} \phi_{n}(x)}{\rho_{n}}+1\right]\right\} .
\end{align*}
$$

We turn to
The Proof of Theorem 6. Combining (36), (48), (52), (84) gives for $|x| \leqslant a_{n}\left(1-n^{-2 / 3}\right)$,

$$
\Gamma:=\frac{1}{n}\left|\sum_{m=1}^{n} s_{m}[f](x)\right| W(x)
$$

$\leqslant C\|f W\|_{L_{\infty}(\mathbb{R})}\left\{\begin{array}{c}\sqrt{\frac{a_{n}}{n \rho_{n}}} \phi_{n}(x)^{\min \{3 / 4,1 / 4+3 \beta / 4,3 / 8(1+\beta)\}}+n^{-1} \phi_{n}^{-1 / 2}(x) \\ \times \log ^{+}\left[\frac{a_{n} \phi_{n}(x)}{\rho_{n}}+1\right] \\ +\frac{n \rho_{n}}{a_{n}} \phi_{n}^{1 / 4}(x) \max _{|t-x| \leqslant \rho_{n}} \phi_{n}^{1 / 4}(t)\end{array}\right\}$
(Recall that for Freud weights, $\psi_{n} \sim \phi_{n}^{-1 / 2}$). Now fix x such that $|x| \leqslant a_{n}\left(1-n^{-2 / 3}\right)$, fix $\Delta \in\left[0, \frac{1}{2}\right)$ and set

$$
\begin{equation*}
\rho_{n}:=\frac{a_{n}}{n} \phi_{n}^{4}(x) \leqslant C \frac{a_{n}}{n} \phi_{n}^{-1 / 2}(x) \leqslant C \frac{a_{n}}{n} \psi_{n}(x) . \tag{86}
\end{equation*}
$$

Then (53) shows that for $|t-x| \leqslant \rho_{n}, \phi_{n}(t) \sim \phi_{n}(x)$. So (85) becomes

$$
\begin{align*}
\Gamma \leqslant & C\|f W\|_{L_{\infty}(\mathbb{R})} \\
& \times\left\{\begin{array}{r}
\phi_{n}(x)^{-4 / 2+\min \{3 / 4,1 / 4+3 \beta / 4,3 / 8(1+\beta)\}} \\
+n^{-1} \phi_{n}^{-1 / 2}(x)\left[\log +\left[n \phi_{n}^{1-4}(x)\right]+1\right]+\phi_{n}^{4+1 / 2}(x)
\end{array}\right\} . \tag{87}
\end{align*}
$$

The ratio of the second and third terms in the last right-hand side is

$$
\begin{aligned}
& n^{-1} \phi_{n}^{-1-\Delta}(x)\left[\log ^{+}\left[n \phi_{n}^{1-\Delta}(x)\right]+1\right] \\
& \quad \leqslant C \frac{\log n}{n} \phi_{n}^{-1-\Delta}(x) \leqslant C \frac{\log n}{n}\left(n^{-2 / 3}\right)^{-1-\Delta}=o(1)
\end{aligned}
$$

as $\Delta<\frac{1}{2}$. It follows that the second term in the right-hand side of (87) is bounded by a constant times the third. Finally, we deduce for $|x| \leqslant$ $a_{n}\left(1-n^{-2 / 3}\right)$,

$$
\Gamma \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})} \phi_{n}(x)^{\min \{-\Delta / 2+\min \{3 / 4,1 / 4+3 \beta / 4,3 / 8(1+\beta)\}, \Delta+1 / 2\}}
$$

Choosing

$$
\Delta:=\frac{2}{3} \min \left\{\frac{3}{4}, \frac{1}{4}+\frac{3 \beta}{4}, \frac{3}{8}(1+\beta)\right\}-\frac{1}{3} \in\left[0, \frac{1}{6}\right]
$$

gives for $|x| \leqslant a_{n}\left(1-n^{-2 / 3}\right)$,

$$
\begin{aligned}
& \frac{1}{n}\left|\sum_{m=1}^{n} s_{m}[f](x)\right| \\
& \quad \leqslant C\|f W\|_{L_{\infty}(\mathbb{R})} \phi_{n}(x)^{2 / 3} \min \{3 / 4,1 / 4+3 \beta / 4,3 / 8(1+\beta)\}+1 / 6
\end{aligned}
$$

We extend this estimate to the whole real line exactly as in the proof of Theorem 4. Then we obtain (31) for $p=\infty$. The extension to $p \in[1, \infty)$ follows as in the proof of Theorem 4 for that range of p.

Proof of Corollary 7. As we have noted, Kriecherbauer and McLaughlin proved that (28) holds for $W=W_{\alpha}$ with $\beta=\min \{\alpha, 2\}$. Then $\kappa=2 / 3$ in (29) and the result follows.

REFERENCES

1. W. Bauldry, A. Mate, and P. Nevai, Asymptotics for solutions of systems of smooth recurrence equations, Pacific J. Math. 133 (1988), 209-227.
2. C. Bennett and R. Sharpley, "Interpolation of Operators," Academic Press, Orlando, 1988.
3. P. Deift, T. Kriecherbauer, K. McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552.
4. J. M. Dombrowski and G. H. Fricke, The absolute continuity of phase operators, Trans. Amer. Math. Soc. 213 (1975), 363-372.
5. J. M. Dombrowski and P. Nevai, Orthogonal polynomials, measures and recurrence relations, SIAM J. Math. Anal. 17 (1986), 752-759.
6. G. Freud, Markov-Bernstein type inequalities in $L_{p}(-\infty, \infty)$, in "Approximation Theory II" (G. G. Lorentz, et al. Eds.), pp. 369-377, Academic Press, New York, 1976.
7. G. Freud, On Markov-Bernstein type inequalities and their applications, J. Approx. Theory 19 (1977), 22-37.
8. T. Kriecherbauer and K. McLaughlin, Strong asymptotics of polynomials orthogonal with respect to Freud weights, Internat. Math. Res. Notices 6 (1999), 299-333.
9. A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
10. A. L. Levin and D. S. Lubinsky, Christoffel functions and orthogonal polynomials for exponential weights on [-1, 1], Mem. Amer. Math. Soc. (1994), 535.
11. A. L. Levin and D. S. Lubinsky, Orthogonal polynomials for exponential weights, to appear.
12. A. L. Levin, D. S. Lubinsky, and T. Z. Mthembu, Christoffel functions and orthogonal polynomials for Erdős weights on ($-\infty, \infty$), Rend. Mat. Roma 14 (1994), 199-289.
13. D. S. Lubinsky, "Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdős Type Weights," Pitman Res. Notes Math. Ser., No. 202, Longmans, Harlow, 1989.
14. D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff, A proof of Freud's conjecture for exponential weights, Constr. Approx. 4 (1988), 65-83.
15. D. S. Lubinsky and F. Moricz, The weighted L_{p} norms of orthonormal polynomials for Freud weights, J. Approx. Theory 77 (1994), 42-50.
16. D. S. Lubinsky and T. Z. Mthembu, Orthogonal expansions and the error of weighted polynomial approximation for Erdős weights, Numer. Funct. Anal. Optim. 13 (1992), 327-347.
17. D. S. Lubinsky and V. Totik, Best weighted polynomial approximation via Jacobi expansions, SIAM J. Math. Anal. 25 (1994), 555-570.
18. A. Mate, P. Nevai, and T. Zaslavsky, Asymptotic expansion of ratios of coefficients of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc. 287 (1985), 495-505.
19. H. N. Mhaskar, "Introduction to the Theory of Weighted Polynomial Approximation," World Scientific, Singapore, 1996.
20. H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live?, Constr. Approx 1 (1985), 71-91.
21. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. (1979), 213.
22. P. Nevai, Exact bounds for orthogonal polynomials associated with exponential weights, J. Approx. Theory 44 (1985), 82-85.
23. P. Nevai, Geza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3-167.
24. E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials II, Math. USSR Sbornik 46 (1983), 105-117.
25. E. A. Rakhmanov, Strong asymptotics for orthogonal polynomials with exponential weights on \mathbb{R}, in "Methods of Approximation Theory in Complex Analysis and Mathematical Physics" (A. A. Gonchar and E. B. Saff, Eds.), pp. 71-97, Nauka, Moscow, 1992.
26. E. B. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer, Berlin, 1997.
27. J. Szabados, Weighted Lagrange and Hermite-Fejer interpolation on the real line, J. of Inequal. and Applns. 1 (1997), 99-123.
